Global IP Network Mobility

using Border Gateway Protocol (BGP)
BGP Network Mobility

- Connexion Service Summary
- Current IP Mobility standards
- Network and Service Challenges
- BGP as a mobility solution
- Questions
Enabling 2-Way Onboard Communications Services...

To Passengers:
- Real-time, Internet Access
- VPN Support
- Connectivity throughout their travel experience
- Extending commonly known hotspot connection method
- Television to Singapore Airlines in 2005

To Airlines:
- Simple cabin design
- Reliable and robust system
- Use wireless to reduce weight & power
- Real-time crew information services
- E-Enabled Aircraft Initiatives
Connexion by Boeing – System Architecture

- Ground Stations
- Antenna
- Antenna Controller
- Core Network Unit
- Data Transceiver & Router
- Internet
- Enterprise & Network Operations Centers
- Connexion by Boeing
2004 Service Region

- Ground Station
- Satellite
- Network Operations Center (NOC)
- Ground Station & Data Center
Current Mobility Standards

- Target host mobility rather than network mobility
 - Mobile IP protocols for IPv4 & IPv6
 - Require mobility support in protocol stacks

- Do not provide “intuitive routing” over a wide geographic area

- Network Mobility only being seriously addressed in IPv6, through the NEMO working group. NEMO Basic Support Protocol (under development) relies heavily on IP tunneling

- Routing optimization is limited to within a BGP autonomous system
Network & Service Goals & Challenges

- Our network challenges are unique in a number of areas
 - Our platforms move,
 - But not just a little…they also move fast
 - Hosts remain stationary with regard to the platform
 - Hosts may number in the hundreds
 - A typical flight between Europe & Asia will use 3 different ground stations and 4 satellite transponders within half a day
 - Leads to a desire for seamless handoff between satellite transponders and between ground stations
The Latency Tax

- Using BGP allows us to directly influence traffic within the Internet as a whole and not just within our own network.

- Mobile IP protocols are not optimized for the vast distances that a jet aircraft normally travels in a single day. Most rely on tunneling & static homing which adds large latencies when the mobile router is not near the home router.

- For Example: Latency with an aircraft homed in Europe currently over east-Asia to an Asia website - one-way
 - 320ms – Aircraft -> geo-synchronous satellite -> ground East Asia
 - 130ms – Asia -> North America
 - 70ms – East Across North America
 - 80ms – North America to Europe
 - 80ms – Europe to North America
 - 70ms – West Across North America
 - 130ms – North America -> Asia
 - 30ms – Within Asia
 - 890ms Total

- Almost 2.7 seconds to complete a TCP 3-way handshake!!!
Finding a better path through the ether...

- Find a better way to route traffic, reduce latency, improve network reliability, and allow for global connectivity

- Static homing & tunneling solutions would require us to provision a substantial global IP backbone to carry the backhauled traffic. These WAN costs would be substantial

- The solution needed to allow seamless user connections throughout a flight

- The solution needed to leverage existing routing technology, couldn’t require outside networks to make changes to accommodate our mobile platforms & needed to be acceptable to network operators worldwide

- In general, traffic flows should follow geography!

- Our solution: Leverage BGP
 - Natively supported worldwide
 - Uses the global routing table for mobility
 - Selective announcement and withdrawal mobile platform prefixes as the platforms move
Fighting Latency Back

- Instead of having mobile platforms homed to a specific geographic network, send & receive the mobile network traffic to & from the Internet at each satellite ground station.

- For Example: Aircraft dynamically homed in Asia to Asian website:
 - 320ms – Aircraft -> geo-synchronous satellite -> ground East Asia
 - 40ms – within Asia
 - 380ms Total

- 1.1 seconds to complete a TCP handshake

- 1.6 seconds or 56% reduction TCP handshake time
Commercial passenger traffic is released at each ground station. Each ground station only advertises the IP’s for the planes it is serving. When a plane leaves a region, that gateway stops advertising its IP’s.
Connexion Network Architecture

- Route Servers
- BGP Route Reflectors
- eBGP Peering
- iBGP Peering
- ISP
 - ISP #1
 - ISP #2
- Internet

Global IP Network Mobility – APNIC 19
Challenges using BGP for Mobility

- /24 network propagation
 - Concerns about the growing number of BGP routes in the global default free zone have caused some network providers to filter smaller route announcements
 - We currently advertise a /24 address block for each mobile platform. Testing of route propagation found that most providers will accept and propagate our /24 announcements
 - In the event that some providers don’t accept our /24 announcements we are advertising a larger aggregate containing all of the mobile platforms
 - We only really require all of our Internet providers to exchange our routes among themselves, mobile platform routes could be filtered at the edge of the network without a loss of connectivity
Challenges using BGP for Mobility

- BGP convergence vs. handoff time between ground stations
 - Our testing has shown that the period of time required to achieve 2-way communications on a new satellite transponder is complementary to the time BGP will converge on global providers.

- Provider concerns
 - Prefix churn
 - Route changes happen only a few times a day
 - As a percentage of total global route-updates our updates are very small
 - Prefixes may have an “inconsistent” origin ASN
 - Currently originates at the active ground station
 - Changes when platform moves…
 - … but does not originate from two places at once
Prefix Transition in Action

- An actual Lufthansa flight from East-Asia to Europe
 - November 17, 2004 01:00 -> 19:00 UTC

- BGP update collectors located throughout the globe collected mobile platform BGP updates as seen from their point of view

- This shows the transition process from one ground station to another
 - Each number on the plot represents a BGP autonomous system
 - Red spots represent the originating autonomous system numbers

- BGP data modeling and extraction provided by the route-views project from the University of Oregon
 - http://www.routeviews.org/
Routes Announced from Ibaraki, Japan
Routes Announced from Moscow, Russia
Routes Announced from Leuk, Switzerland
Route Flapping and Dampening

- Route Flapping and Dampening
 - Will our routes be dampened by some providers?
 - Testing & research has shown that a single route update is unlikely to cause a route to be dampened by core networks. We see some dampening after about 5 changes within a short period of time. Dampening for global network operators is also not as popular as it used to be.
 - We always announce a stable aggregate “safety net” for our mobile platforms to ensure a stable path from the dark corners of the Internet.
 - Satellite handoff within a ground station: A ground station may serve more than one satellite transponder. When a handoff occurs within a ground station, we do not propagate a route withdrawal beyond our autonomous system.
Future Prefix Management

- Dynamic Prefix Management
 - A system that could allow for mobile platforms to “lease” address blocks for the duration of a “flight”. Similar to DHCP for hosts. This will allow for more efficient use of address space

- Regionalization of address space
 - Address blocks can also be regionalized. Certain “flights” generally stay within the service of a single ground station
 - By noting which “flights” will be served by a single ground station, we can then assign address space from a larger aggregate which is tied to the ground station. This will allow us to not announce specific blocks for flights when they are not needed
Conclusions

- BGP as a Mobility Solution
 - Does not require special IP stacks on customer hosts
 - Does not require special routing onboard the mobile platform
 - Does not require any special treatment of BGP attributes
 - Does not require special operational support from peers
 - Only suitable for /24 and bigger networks

• Special thanks to all members of the Connexion Network Team
 Gordon Letney, Andrew Dul, Terry Davis, Carlos Montes, Ben Abarbanel
Thank you

http://www.connexionbyboeing.com